A combined geometric INAR(p) model based on negative binomial thinning

نویسندگان

  • Aleksandar S. Nastic
  • Miroslav M. Ristic
  • Hassan S. Bakouch
چکیده

In this paper, we introduce a new (combined) integer-valued autoregressive model of order p with geometric marginal distributions, denoted by CGINAR(p), using the negative binomial thinning introduced by Ristić et al. [19]. Several properties of the model are constructed and discussed, including one-step ahead conditional statistical measures. Some methods for estimating the model parameters are considered and the asymptotic properties of the obtained estimators are derived. A real-life data example is investigated to assess the performance of the model. © 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A bivariate INAR(1) time series model with geometric marginals

In this paper we introduce a simple bivariate integer-valued time series model with positively correlated geometric marginals based on the negative binomial thinning mechanism. Some properties of the model are considered. The unknown parameters of the model are estimated using the modified conditional least squares method. © 2011 Elsevier Ltd. All rights reserved.

متن کامل

Autoregressive Negative Binomial Processes

Abstract We start by studying first-order autoregressive negative binomial (NBD) processes. We then compare maximum likelihood and moment based estimators of the parameters of the NBD INAR(1) model and show that the degree of dependence has significant effect on the quality of the estimators. Finally, we construct NBD processes with long-range dependence by using the NBD INAR(1) processes as ba...

متن کامل

Integer Valued AR(1) with Geometric Innovations

The classical integer valued first-order autoregressive (INA- R(1)) model has been defined on the basis of Poisson innovations. This model has Poisson marginal distribution and is suitable for modeling equidispersed count data. In this paper, we introduce an modification of the INAR(1) model with geometric innovations (INARG(1)) for model- ing overdispersed count data. We discuss some structu...

متن کامل

Estimation of INAR(p) models using bootstrap

In this paper we investigate bootstrap techniques applied to the estimation of the thinning parameters in INAR(p) models. We propose a new bootstrap approach based on sieve bootstrap. The approach is then applied to the Yule-Walker estimator of the thinning parameters. Monte Carlo experiments are carried out to valuate the performance of bootstrap estimator and the superiority of our proposal i...

متن کامل

Estimation of Count Data using Bivariate Negative Binomial Regression Models

Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical and Computer Modelling

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2012